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Abstract.
Background: Lipidomics may provide insight into biochemical processes driving Alzheimer’s disease (AD) pathogenesis
and ensuing clinical trajectories.
Objective: To identify a peripheral lipidomics signature associated with AD pathology and investigate its potential to predict
clinical progression.
Methods: We used Bayesian elastic net regression to select plasma lipid classes associated with the CSF pTau/A�42 ratio
as a biomarker of AD pathology in preclinical and prodromal AD cases from the ADNI cohort. Consensus clustering of the
selected lipid classes was used to identify lipidomic endophenotypes and study their association with clinical progression.
Results: In the APOE4-adjusted model, ether-glycerophospholipids, lyso-glycerophospholipids, free-fatty acids, cholesterol
esters, and complex sphingolipids were found to be associated with the CSF pTau/A�42 ratio. We found an optimal number
of five lipidomic endophenotypes in the prodromal and preclinical cases, respectively. In the prodromal cases, these clusters
differed with respect to the risk of clinical progression as measured by clinical dementia rating score conversion.
Conclusion: Lipid alterations can be captured at the earliest phases of AD. A lipidomic signature in blood may provide a
dynamic overview of an individual’s metabolic status and may support identifying different risks of clinical progression.
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INTRODUCTION

Current diagnostic research criteria for the
early detection of Alzheimer’s disease (AD) are
based on disease-defining biomarkers of amyloi-
dosis, tauopathy, and neurodegeneration [1]. These
biomarkers, however, are not precise enough to
predict individual clinical trajectories and risk of
clinical conversion [2]. More recently, multi-omics
approaches have been studied to account for the
heterogeneity of clinical courses in AD and iden-
tify different clinic-pathological endophenotypes
as a potential basis for personalized medicine
[3, 4].

As one important example, lipidomics provides
insight into metabolic endophenotypes that may mod-
ify the effect of AD pathology on neurodegeneration
and clinical trajectories. Thus, lipids are involved
in many downstream processes of AD pathology,
such as membrane remodeling, modulation of trans-
membrane proteins, including amyloid-� protein
precursor (A�PP) and its secretases, maintaining
blood-brain barrier function, myelination, cell sig-
naling, and inflammation. In addition, they may even
influence upstream events such as oxidative stress
pathways and alterations of energy balance [5, 6].
Recent genetic studies supported the role of lipids
in AD pathogenesis even beyond the apolipopro-
tein E �4 allele (APOE4), which is considered the
major genetic risk factor for late-onset sporadic
AD (LOAD) [7]. Genome-wide association studies
(GWAS) have identified associations between disease
status and several genes involved in lipid homeosta-
sis, such as CLU (clusterin), SORL1 (sortilin-related
receptor 1), ABCA7 (ATP-binding cassette, sub-
family A, member 7), and PLD3 (phospholipase-D3)
[7] in addition to the microglia related PLCG2 (phos-
pholipase C-gamma) [8].

Our study used targeted lipidomics data from
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort to identify lipid alterations in the
blood associated with AD pathology biomarker,
namely cerebrospinal fluid (CSF) pTau/A�42 ratio,
in people with preclinical or prodromal AD. In
a secondary exploratory analysis, we determined
lipidomic endophenotypes within prodromal and
preclinical cases, respectively, using a consensus
clustering approach. We investigated whether these
lipidomic endophenotypes contributed to predicting
subsequent clinical progression as determined by
dementia rating score (CDR) conversion in preclini-
cal and prodromal AD cases.

MATERIALS AND METHODS

Cohort overview

This study used data provided by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu). ADNI is a large, multicen-
ter, longitudinal study of older adults launched in
2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering,
the Food and Drug Administration, private phar-
maceutical companies, and non-profit organizations.
The study was designed to acquire serial neuroimag-
ing, clinical and neuropsychological assessments,
and other biologic markers to monitor the progression
of mild cognitive impairment (MCI) and early AD. A
full description of the study protocols and analytical
methods are provided at (http://www.adni-info.org/).

The final cohort consisted of 529 participants
from the ADNI cohort having a baseline diagno-
sis of either cognitively normal or mild cognitive
impairment along with complete CSF- biomarkers,
lipidomics, and body mass index (BMI) data. BMI
values were sorted into three categories as follows:
BMI low (average weight): 18.5–24.9 or (under-
weight): < 18.5, BMI medium (overweight): 25–29.9
and BMI high (at least moderately obese): > 30. We
further classified our participants into three diagnos-
tic groups based on their CSF pTau/A�42 status, such
that the cognitively normal (CN) group represents
cognitively normal participants with CSF pTau/A�42
below the cut-off (0.025) [9]. Preclinical and prodro-
mal groups had CSF pTau/A�42 above the optimized
cut-off and an initial diagnosis of cognitively normal
and MCI, respectively.

APOE genotyping

At the baseline visit, blood samples were obtai-
ned from the participants, shipped to the central
biomarker analysis lab at the University of Penn-
sylvania, and processed using an APOE genotyping
kit, as further described (http://adni.loni.usc.edu/wp-
content/uploads/2010/09/ADNI GeneralProcedures
Manual.pdf). For subsequent analysis, we coded par-
ticipants’ APOE genotype according to the presence
of �4 allele present as follows; 0: no �4 allele, 1 : 1
or 2 �4 alleles.

CSF biomarkers measurements

CSF amyloid-� (1-42) (CSF A�42) and CSF
Phospho-Tau (181P) (CSF pTau) were measured

http://adni.loni.usc.edu
http://www.adni-info.org/
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
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using the fully automated Roche Elecsys® immuno-
assay platform at the UPenn/ADNI Biomarker Labo-
ratory. CSF biomarkers A�42 and pTau/A�42 were
binary classified based on the optimized cut-offs
977 pg/ml and 0.025, respectively. These cut-offs
were determined on the ADNI cohort then vali-
dated against the visual reads of amyloid-� PET, as
explained in [9].

Lipidomics data

Targeted Lipidomics analysis was carried out on
the plasma samples from ADNI participants using
ultra-high-performance liquid chromatography cou-
pled with chromatographic separation to characterize
isomeric and isobaric lipid species. Mass spectrom-
etry analysis was performed on an Agilent (6490
QQQ) mass spectrometer in positive ion mode with
dynamic scheduled multiple reaction monitoring
(MRM). The analysis was conducted following the
lipidomics protocol developed by Kevin Huynh and
Peter Meikle in Baker Heart and Diabetes Institute,
Metabolomics laboratory. A detailed description of
their lipidomics platform was provided in the method-
ology file (ADNI ADMCLIPIDOMICSMEIKLEL
ABLONG METHODS 20210121.pdf) and respec-
tive articles [10,11].

After applying the standard normalization and
batch correction procedures, measurements from 692
lipid species were provided in the file (ADMCLIPI
DOMICSMEIKLELABLONG.csv). All the lipid
measurements were log10 and z-transformed before
any analysis. Lipid species (692) were then merged
into one hundred and seven (107) composite scores
defined through a hierarchical clustering approach
that was applied within each of the lipid sub-
classes/classes.

Statistical analysis

Selection of salient lipids associated with
biomarkers of AD pathology

We used Bayesian elastic net regularized logistic
regression to select lipid composite scores associated
with the CSF pTau/A�42 ratio as a biomarker of AD
pathology. Regularized logistic regression methods
were developed to carry out simultaneous parame-
ter estimation and variable selection [12, 13]. Elastic
net offers an optimum regularization and variable
selection, particularly in high dimensional data set-
tings, such as the current lipidomics data, where
features are often highly collinear, and their num-
ber exceeds the sample size [13, 14]. As one of

the regularization approaches, the elastic net pro-
vides a reasonable compromise between both ridge
(L2) and lasso (L1) penalties [13, 14]. It performs
an effective feature selection via the lasso penalty
while better handling correlated features via the ridge
penalty [14, 15]. Adopting a Bayesian approach pos-
sesses several advantages over classic elastic net
regularized regression [12, 16]. First, Bayesian meth-
ods provide a straightforward statistical inference
for the estimated coefficients through the posterior
distributions and credibility intervals [12, 16]. Sec-
ond, it allows for simultaneous estimation of both
penalty parameters (L2 & L1) and model parameters
[12, 16]. This is particularly important in controlling
the double shrinkage problem (too small, estimated
coefficients) due to sequential estimation of penalty
parameters through cross-validation procedure in the
classic method. Additionally, Bayesian approaches
have shown better variable selection in real data
examples and simulation studies [12].

Before conducting the analysis, lipid composite
scores were transformed into W-scores using regres-
sion models estimated on the control group. W-scores
are analogous to Z-scores yet adjusted for particular
covariates, namely age and sex [17]. An initial filter-
ing step was carried out to include only the top 60%
of lipid composite scores correlated with the CSF
pTau/A�42 status in the regularized logistic regres-
sion models. Then, a Bayesian logistic regression
model with elastic net regularization was fitted in
the RStan interface. We adapted the scripts provided
by Sara van Erp on GitHub (https://github.com/sara-
vanerp/bayesreg), implementing elastic net priors in
Bayesian regularized regression models using Stan
language [16]. A training dataset (80% of the whole
cohort) was used for estimation of model parame-
ters through Markov Chain Monte Carlo (MCMC)
sampling (No-U-Turn Sampler (NUTS) algorithm).
The resulting estimates were then used to predict
the outcome in the test dataset (20 % of the whole
cohort). Lipid composite scores were selected based
on the credible interval criterion, where a variable is
excluded if the credibility interval covers 0. A credi-
bility interval level of 50% was used as recommended
in [12]. Salient lipid composite scores were deter-
mined based on being selected in more than 50%
of the cross-validation 100 iterations. Three different
models were calculated: 1) Reference model, using
the demographic criteria (Age and Sex); 2) Lipid
model, using lipid composite W-scores, and 3) Lipid
model + APOE4, where participants’ APOE4 status
was added as a covariate to the Lipid model.

https://github.com/sara-vanerp/bayesreg
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Prediction of clinical progression
Lipidomic endophenotypes based on consensus

clustering. We applied a hierarchical clustering on
those lipid composite scores that had been found
associated with the CSF pTau/A�42 ratio in the
previous regularized regression analysis. The clus-
tering was performed separately in the preclinical
and prodromal subgroups, respectively. We employed
a consensus clustering approach using data sub-
sampling [18, 19], repeated 5,000 times to ensure
the stability and robustness of clustering results.
During each repetition, 80% of the data samples
(participants) were randomly selected for agglomer-
ative hierarchical clustering using Ward’s criterion
to minimize the total within-cluster variance. A con-
sensus matrix/cluster-based similarity matrix was
then constructed. Each element in the matrix is a
number between 0 and 1 inclusive, representing
the proportion of times that two samples (partic-
ipants) were clustered together out of the times
that the same samples were chosen in the bootstrap
sub-sampling process. Then final cluster assignment
was defined through the consensus function, cluster-
based similarity partitioning algorithm (CSPA), first
introduced by Strehl and Ghosh and implemented
in diceR library [18]. CSPA is an efficient con-
sensus function that re-clusters the data samples
through applying hierarchical clustering on the
constructed consensus matrix [18, 19]. Hence the
cluster labels are inferred at the hierarchy level
of the optimal number of clusters (k) previously
defined.

The optimal number of clusters was defined based
on a composite score combining the proportion of
ambiguous clustering (PAC) score and Dunn’s index
estimated within the consensus clustering. PAC is
a robust estimate of cluster stability, mainly when
data samples are not independent [20], an intrinsic
feature of omics data. PAC score is the fraction of
sample pairs with consensus index values falling in
the intermediate interval, i.e., PAC window. In a per-
fect clustering, the consensus matrix would consist
of zeros or ones, and therefore the PAC score would
be zero [20]. Thus, the lower the PAC score, the more
stable and near perfect the clusters. We used a PAC
window of (0.1,0.9) in our analysis.

Conversely, Dunn’s index estimates clustering
internal validity considering compactness and separa-
tion measures [21]. The larger the Dunn’s index, the
better the inter-cluster separability and intra-cluster
compactness. The composite score was computed
as PAC score divided by Dunn’s index value;

accordingly, the lower the composite score, the better
the clustering.

Lipidomic endophenotypes and risk of CDR
conversion. We assessed the potential of the
defined lipidomic endophenotypes to predict Clini-
cal Dementia Rating score (CDR) conversion from a
value of 0 to 0.5 or 0.5 to 1 or higher in the preclin-
ical and prodromal sub-cohorts, respectively. Using
Bayesian survival analysis, we estimated the risk of
conversion over a follow-up period of six years (aver-
age follow-up = 4.15 + 1.72) while accounting for
censoring. We further explored the effect of several
covariates, namely age, sex, BMI, APOE4, and years
of education, on the estimated risk of conversion.
Finally, Bayesian multivariate analysis (MANOVA)
was conducted to reveal which lipid composite scores
distinguished clusters at low versus high risk of clin-
ical progression.

The whole analysis workflow is summarized in
Fig. 1. All analyses were performed in R (version
3.6.3) using the following packages: RStan (version
2.21.2), RStanArm, brms, bayestestR, BayesFactor,
pROC, diceR.

RESULTS

Demographic characteristics

A summary of the demographic characteristics of
our final cohort is provided in (Table 1). The diag-
nostic groups did not differ in age, sex, or education
years. The distribution of BMI categories differed
between groups; the preclinical group had the high-
est proportion of BMI-low category. As expected, the
APOE �4 allele was more prevalent in preclinical
and prodromal groups (≥60%) compared with the
normal control group (pTau/A�42 -ve) (18%). AD
CSF biomarker levels (pTau and pTau/A�42) were
higher in prodromal participants than in the preclini-
cal group.

Selection of salient lipids associated with
biomarkers of AD pathology

Bayesian elastic net regularized logistic
regression models performance

Using only age and sex as predictors, the per-
formance of the Reference model was not better
than random prediction. The Lipid model improved
the prediction accuracy. The cross-validated area
under the receiver operating curves (CV-AUC),
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Fig. 1. Overview of the data analysis workflow. This figure summarizes the analysis workflow adopted by this study as described in
the Materials and Methods section. Panel A displays the preparation of the final cohort based on the defined inclusion criteria then the
classification of the final diagnostic groups based on the CSF pTau/A�42 ratio. The statistical analysis is demonstrated in panels B and C.
Panel B illustrates the selection of salient lipids associated with biomarkers of AD pathology through Bayesian elastic net regularized logistic
regression models. Panel C explains the steps to predict clinical progression in the diagnostic groups, namely prodromal and preclinical.
First, we defined clusters of participants having similar lipid profiles within each diagnostic group. Then we explored the defined clusters
for the risk of conversion to MCI or dementia.

Table 1
Overview of cohort demographics

CN Preclinical Prodromal Whole cohort

N 182 73 274 529
Mean age (sd)a 73.2 (5.9) 75.9 (5.2) 73.3 (7.0) 73.6 (6.5)
Sex – Femalesb N (percent %) 88 (48 %) 41 (56 %) 109 (40 %) 238 (45 %)
APOE4 carriersb∗∗∗ N (percent %) 32 (18 %) 43 (59 %) 195 (71 %) 270 (51 %)
BMIb∗∗∗ N (percent %)

Low 50 (27%) 38 (52%) 113 (41%) 201 (38%)
Medium 85 (47%) 21 (29%) 126 (46%) 232 (44%)
High 47 (26 %) 14 (19 %) 35 (13%) 96 (18%)

Mean Education y (sd)a 16.3 (2.7) 16.0 (2.8) 15.9 (2.9) 16.1 (2.8)
CSF biomarkers
Mean A�42 (sd)a∗∗∗ 1727.0 (524.0) 634.0 (185.0) 630.0 (167.0) 1007.8 (620.4)
Mean pTau (sd)a∗∗∗ 20.1 (6.6) 28.8 (10.4)# 35.4 (14.1)# 29.2 (13.4)
Mean pTau/A�42 ratio (sd)a∗∗∗ 0.012 (0.003) 0.049 (0.025)# 0.059 (0.028)# 0.042 (0.03)

Summary of the demographic characteristics of our cohort split into the final three diagnostic groups cognitively
normal elderly (CN), preclinical and prodromal. Characteristics are described as Number (N) and the corresponding
percentage (percent %) or Mean value and standard deviation (sd) as convenient. Group differences were tested
using Bayesian ANOVA (a) and Bayesian test of association (b). Results were interpreted in terms of Bayes Factor
(BF) in favor of presence of group differences in the tested variables, where BF of (3–20) represented moderate
evidence (∗), BF of (20–150) represented strong evidence (∗∗) while BF of (>150) represented very strong evidence
(∗∗∗). Differences in levels of CSF biomarkers levels between Preclinical and Prodromal are marked by (#).

CV-Accuracy, CV-Sensitivity, and CV-Specificity at
the optimum threshold were 0.65, 0.66, 0.68, and
0.61, respectively. However, the best performance
was achieved by the Lipid + APOE4 model; the esti-
mated CV-AUC, CV-Accuracy, CV-Sensitivity, and
CV-Specificity increased to 0.76, 0.71, 0.69, and
0.77, respectively. Supplementary Table 1 provides
an overview of all tested models.

Identification of salient lipids
The Lipid + APOE4 model selected a set of twenty-

eight lipid composite scores in at least 50% of
cross-validation repetitions (Supplementary Table
2). A features’ relative importance and stabil-
ity were determined by the median posterior
�-coefficients and frequency of selection across
the cross-validations. According to these criteria,
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lyso-glycerophospholipids (LPL), alkenyl-glycero-
phospholipids (plasmalogens), free fatty acids
(FFA), cholesterol esters and sphingolipids (complex
ceramides) lipid classes/subclasses ranked on top
of the list. Both lyso-phosphatidylcholine (LPC 7:
poly-unsaturated fatty acid (PUFA)) and lyso-alkyl-
phosphatidylcholine (LPC O 2: long-chain fatty acid
(FA)) were positively associated with the CSF pTau/
A�42 ratio. Similarly, phosphatidylcholine (PC 5:
arachidonic acid (AA)) harboring arachidonic acid
showed a positive association. Conversely, plasmalo-
gens such as alkenyl- phosphatidylcholine (PC P 5:
docosahexaenoic acid (DHA), Eicosapentaenoic acid
(EPA) & PC P 2: saturated and mono-unsaturated
FA) and alkenyl- phosphatidylethanolamine (PE P 5:
AA, DHA) showed negative associations.

Except for AA (FA 3), free fatty acids (FA 1: sat-
urated, mono-unsaturated, PUFA) were negatively
associated with the AD biomarkers. Cholesterol
esters (Chols ester 3: PUFA & Chols ester 2) and
long-chain acyl-carnitines (AC 4: PUFA) were
positively associated with AD biomarkers, while
di-acylglycerol (DG 3: EPA, DHA) and alkyl-di-
acylglycerol (TG O 3) showed negative relation.

Complex ceramides including hexosyl-ceramides
(hexCER 6 & hexCER 7), gangliosides (GM1), and
sulfatides were found to be positively associated with
AD biomarkers yet di-hydro-ceramides (dhCER 1),
gangliosides (GM3 3: very long FA), and sphin-
gomyelin (SM 3: very long FA) were negatively
associated. Figure 2 displays the median posterior �-
coefficients and their credibility intervals across the
cross-validations, as estimated by the Lipid + APOE4
model. Lipid species, constituting each of the salient
lipid composite scores, are listed in Supplementary
Table 3.

Prediction of clinical progression

Lipidomic endophenotypes based on consensus
clustering

We conducted consensus clustering to identify
lipidomic endophenotypes based on the set of lipid
composite scores selected by the Lipid + APOE4
model.

In the prodromal sub-cohort, we determined the
optimum number of clusters to be (k = 5), as demon-
strated in Supplementary Figure 1. Of the prodromal
participants, 28% fell into the cluster (I), 23% in the
cluster (IV), 20% each in the clusters (II) and (V),
and 9% in the cluster (III). Apart from the BMI cate-
gories distribution, there was no conclusive evidence

for differences in age, sex, years of education, APOE4
status, or the CSF levels of AD biomarkers between
the defined clusters (Supplementary Table 4).

Following the same approach, we determined (k =
5) the optimal number of clusters for the preclinical
sub-cohort, as shown in Supplementary Figure 2. Of
these participants, 28% fell into the cluster (I), while
the rest were equally distributed over the remaining
clusters. Details on the distribution of demographic
characteristics, APOE4 genotype, and BMI cate-
gories can be found in Supplementary Table 5.

Lipidomic endophenotypes and risk of CDR
conversion

We evaluated the risk of CDR conversion among
prodromal sub-cohort clusters with and without
adjusting for the effect of covariates as demonstrated
in Supplementary Table 6. Cluster (IV) was chosen as
the reference group since it exhibited a lower risk of
CDR conversion. Moreover, cluster (IV) enclosed a
relatively large proportion of participants. As shown
in Fig. 3, the clusters (II) (HR = 1.97 (1.26–3.10)) and
(V) (HR = 1.99 (1.30–3.00)) had an increased risk of
conversion in the APOE4 adjusted model. To inves-
tigate whether these effects differed between sexes,
we repeated the Bayesian survival models (APOE4
adjusted) in the male and female data subsets, respec-
tively (Table 2). In men, the lipid profiles of clusters
(II and V) showed an increased risk of conversion,
whereas cluster (III) showed a decreased risk of
conversion relative to the reference cluster (IV). In
women, only cluster (II) had an increased risk of
conversion.

Finally, we conducted Bayesian multivariate anal-
ysis to identify differences in lipid composite scores
between the reference cluster (IV) and the remaining
clusters (Supplementary Table 7). Figure 4 shows the
specific lipid profile for each cluster of the prodromal
sub-cohort.

In the preclinical sub-cohort, there was no evidence
of a difference in risk of CDR conversion between
the five clusters. Essentially identical results were
obtained whether we adjusted or not for covariates.

DISCUSSION

We explored different lipid classes in preclinical
and prodromal AD cases to analyze the relationship
between lipid metabolism markers and biomarkers
of amyloid and tau pathology, as well as clinical pro-
gression.
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Fig. 2. Salient lipids associated with CSF pTau/A�42 ratio. We used Bayesian elastic net logistic regression (Lipid+APOE4 model) to select
salient lipid composite scores associated with CSF pTau/A�42 ratio. Estimated posterior �-coefficients are represented as points with their
respective 50% and 90% credibility intervals as thick and thin error bars, respectively. The points’ color codes for their corresponding
lipid class. LPC O 2: Lyso-alkyl-phosphatidylcholine (long/ very long FA), Choles ester 3: Cholesteryl ester (PUFA), hexCER: Hexosyl-
ceramide, FA 3: Free fatty acid (AA), PC 5: Phosphatidylcholine (AA), LPC 7: Lysophosphatidylcholine (PUFA), AC 4: Acylcarnitine
(PUFA), GM1: GM1 gangliosides, Choles ester 2: Cholesteryl ester, SULF 1: Sulfatides, LPE 1: Lyso-phosphatidylethanolamine (satu-
rated FA), PI 1: Phosphatidylinositol (PUFA), LPI 3: Lyso-phosphatidylinositol (AA), GM3 3: GM3 gangliosides (very long FA), dhCER:
Dihydroceramide, LPC P 2: Lyso-alkenyl-phosphatidylcholine (long FA), SM 3: Sphingomyelin (very long saturated FA), PI 2: Phos-
phatidylinositol (saturated, monounsaturated FA), LPC 5: Lysophosphatidylcholine (long, very long FA), LPC 2: Lysophosphatidylcholine
(odd numbered FA), TG O 3: Alkyl-diacylglycerol, DG 3: diacylglycerol (EPA & DHA), PC P 2: Alkenyl-phosphatidylcholine (saturated
and mono-unsaturated FA), PE P 5: Alkenyl-phosphatidylethanolamine (AA, DHA), PC P 5: Alkenyl-phosphatidylcholine (DHA & EPA)
and FA 1: Free fatty acid.

Our first goal was to determine associations be-
tween peripheral lipid alterations and pathology
markers of AD in the CSF. Ether glycerophospho-
lipids, particularly plasmalogens, showed lower
levels in preclinical and prodromal AD participants
compared with controls. Conversely, we found ara-
chidonic acid-containing phosphatidylcholine,
PUFA (omega-3) lyso-phosphatidylcholine and lyso-
alkyl-phosphatidylcholine with predominant satu-
rated/mono-unsaturated long-chain fatty acid to be
increased. Low levels of plasmalogens have been

frequently linked to AD pathology [22], whether
measured in brain tissue [23–25], CSF [25], or
plasma blood samples [26]. Grey matter plasmalo-
gens (DHA and AA at sn-2) depletion was found
associated with disease progression and severity in
AD patients [27–30]. A recent study by Lim et al.
proposed that ether-lipids dysregulation may partly
mediate the effect of two major AD risk factors,
namely, age and APOE4 [31].

Toledo et al. showed that higher baseline levels of
long-chain and PUFA-containing alkyl phosphatidyl-
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Fig. 3. Lipid endophenotypes predict clinical progression to dementia. We conducted a Bayesian survival analysis to estimate the risk of
clinical progression to dementia among the pre-defined clusters of the prodromal sub-cohort. Clinical progression in the prodromal sub-cohort
is defined as the conversion of clinical dementia rating score (CDR) from a value of 0.5 to 1. Clusters (II and V) are found to have � 2 folds
higher risk of progression to dementia compared to the reference cluster (IV).

Table 2
Risk of clinical progression among prodromal lipidomic endophenotypes

Model Cluster + APOE4 Male subset Female subset

Median Hazard HDI Median Hazard HDI Median Hazard HDI
(MAD) ratio (MAD) ratio (MAD) ratio

Intercept: IV −9.03 (1.80) –8.46 (2.20) –9.24 (2.72)
I 0.02 (0.26) 1.02 0.68–1.52 –0.16 (0.32) 0.85 0.54–1.51 0.28 (0.42) 1.33 0.68–2.72
II 0.68 (0.28) 1.97 1.26–3.10 0.56 (0.35) 1.75 1.04–3.16 0.84 (0.43) 2.32 1.15–4.57
III –0.41 (0.42) 0.66 0.36–1.22 –1.08 (0.58) 0.34 0.13–0.89 0.09 (0.54) 1.10 0.48–2.56
V 0.69 (0.26) 1.99 1.30–3.00 0.85 (0.34) 2.35 1.38–4.06 0.55 (0.43) 1.74 0.89–3.53
APOE4 0.39 (0.21) 1.48 1.07–2.05 0.40 (0.27) 1.50 1.00–2.25 0.27 (0.33) 1.31 0.76–2.23

Bayesian survival analysis was conducted to estimate the relative risk of progression to dementia among prodromal lipidomic endophenotypes
while adjusting for APOE4. APOE4 adjusted model was selected based on the sensitivity analysis provided in Supplementary Table 6, which
investigated the relative risk of several covariates. We further replicated the same model on male and female subsets separately to explore
sex-specific effect of lipidomic endophenotypes on clinical progression. Throughout the analysis, we set cluster (IV) as our reference group.
Results were interpreted in terms of high-density intervals (HDI) of posterior distributions, where hazard ratios with HDI not covering (1)
were considered relevant and reported in red.

cholines (PC ae 42 : 4, PC ae 44 : 4) correlated with
abnormal levels of CSF A�42 in preclinical and pro-
dromal AD participants of the ADNI cohort and
predicted conversion from MCI to AD dementia
[32]. In the current study, we observed high levels
of arachidonic acid-containing phosphatidylcholine,
and long-chain alkyl lyso-phosphatidylcholines
(LPC-O), were associated with the CSF pTau/A�42

ratio. Results from both studies suggest an early role
of arachidonated phosphatidylcholines, particularly
long-chain alkyl isomers and their lyso derivatives,
in AD pathogenesis, even in cognitively normal indi-
viduals with pathological levels of CSF AD biomar-
kers. These phosphatidylcholine species are known
precursors of potent inflammatory mediators, includ-
ing platelet-activating factor (PAF) and arachidonic
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Fig. 4. Heterogeneity of lipidomic endophenotypes among the prodromal sub-cohort. The specific lipid profile of each cluster is demonstrated
on a heatmap in terms of average w-scores. On the color scale, red represents scores higher than expected in the age and sex-matched
control group, and blue color represents lower scores. Bayesian multivariate analysis was conducted to identify lipid composite scores
distinguishing clusters at higher risk of clinical progression from the reference group. Cluster (IV) was set as the reference group and
marked by (Ref.). Clusters (II and V) were defined as groups at higher risk of progression and marked by (#). Asterisk (∗) points to lipid
scores that showed evidence of group differences. PC 5: Phosphatidylcholine (AA), PC P 2: Alkenyl-phosphatidylcholine (saturated and
mono-unsaturated FA), PC P 5: Alkenyl-phosphatidylcholine (DHA & EPA), PE P 5: Alkenyl-phosphatidylethanolamine (AA, DHA),
PI 1: Phosphatidylinositol (PUFA), PI 2: Phosphatidylinositol (saturated, monounsaturated FA), LPC 2: Lysophosphatidylcholine (odd
numbered FA), LPC 5: Lysophosphatidylcholine (long, very long FA), LPC 7: Lysophosphatidylcholine (PUFA), LPC O 2: Lyso-alkyl-
phosphatidylcholine (long/very long FA), LPC P 2: Lyso-alkenyl-phosphatidylcholine (long FA), LPE 1: Lyso-phosphatidylethanolamine
(saturated FA), LPI 3: Lyso-phosphatidylinositol (AA), dhCER: Dihydroceramide, hexCER: Hexosyl-ceramide, GM3 3: GM3 gangliosides
(very long FA), GM1: GM1 gangliosides, SM 3: Sphingomyelin (very long saturated FA), SULF 1: Sulfatides, Choles ester 2: Cholesteryl
ester, Choles ester 3: Cholesteryl ester (PUFA), DG 3: diacylglycerol (EPA & DHA), TG O 3: Alkyl-diacylglycerol, FA 1: Free fatty acid,
FA 3: Free fatty acid (AA) and AC 4: Acylcarnitine (PUFA).

acid. Additionally, they are highly abundant in
platelets and immune cells [33, 34]. This points to
a potential regulatory role in inflammation processes
and would represent a possible link between inflam-
mation and AD [32].

Complex ceramides, including glycosylated cera-
mides, GM1 gangliosides, and their precursors
hexosyl-ceramides and sulfatides, showed higher lev-
els in prodromal and preclinical AD participants, in
contrast to di-hydro-ceramides, sphingomyelins, and
GM3 gangliosides, which were decreased. Several
studies suggested a shift in sphingolipids metabolism

towards ceramides accumulation [35, 36] and deple-
tion of sphingomyelins, particularly those with
long-chain FA (C22, C24) [37, 38] and sulfated
sphingolipids [35] early in the course of AD [39].
Ceramides, a key bioactive molecule in sphingolipids
metabolism, were suggested to contribute to the
increased susceptibility of neurons and oligodendro-
cytes to apoptotic cell death [40]. This hypothesis
was further supported by the elevated activity of
enzymes involved in ceramides synthesis, namely
sphingomyelinases and ceramidases, in brain tissue
of AD cases [38]. Consistent with these findings, gene
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expression of sphingomyelinases and serine palmi-
toyl transferase enzymes was found to be upregulated
in AD patients’ brain tissue [36, 39].

The second goal of our study was to identify
distinct lipidomic endophenotypes and assess their
association with clinical progression. Lipidomics
endophenotyping offers a global mapping of the
alterations in biochemical pathways [41]. These alter-
ations may partly reflect underlying AD pathology.
Additionally, these endophenotypes can capture com-
plementary information related to an individual’s
specific comorbidities and/or genomic characteris-
tics that could partly explain the diversity observed
in clinical trajectories within AD populations [3]. In
the prodromal sub-cohort, the lipid profiles of clus-
ters (II and V) were associated with a higher risk of
clinical progression. In both clusters, we observed
lower levels of PUFA (mainly AA) containing plas-
malogens and phosphatidylcholines associated with
a compensatory increase of plasmalogens, mainly
alkenyl phosphatidylcholines, containing saturated
and mono-unsaturated FAs. Higher levels of choles-
terol esters, complex ceramides together with the
depletion of long-chain sphingomyelins, and di-
hydro-ceramides were also noted in clusters (II and
V) participants. Cluster (III) lipidomic profile was
associated with a lower risk of progression (CDR con-
version) yet only in men. Cluster (III) constituted a
group of prodromal participants with a higher preva-
lence of low BMI and a slightly higher proportion of
APOE4 carriers compared with the reference cluster
(IV).

Previous studies used logistic regression or
machine learning algorithms to investigate the asso-
ciation of lipids with dementia risk in cognitively
normal individuals [42–44] and people with MCI
[32, 45]. Several studies have found higher levels of
sphingomyelin, phosphatidylcholines, and lysophos-
phatidylcholine associated with conversion from
MCI to AD/dementia [32, 46, 47]. Conversely, Map-
stone et al. [43] and Ma et al. [45] showed that
lower baseline levels of phosphatidylcholines and
lysophosphatidylcholine were significantly associ-
ated with accelerated cognitive decline [45] and risk
of conversion to MCI/AD compared to cognitively
stable participants [43].

In a different approach, Wood et al. [48] addressed
heterogeneity in lipid alterations patterns within
groups of MCI and AD cases. They defined sub-
groups within each diagnostic group according to
their Mini-Mental State Examination score (low ver-
sus high). Based on the literature, they focused on two

lipid classes, ethanolamine plasmalogens and diacyl-
glycerols. MCI and AD cases had elevated levels
of diacylglycerols and plasmalogens depletion com-
pared with controls [48]. Low and high Mini-Mental
State Examination MCI cases, however, showed no
differences in both lipid classes [48]. In contrast to
such a hypothesis-driven approach, here we explored
the diversity of lipidomic endophenotypes within
prodromal cases using an unsupervised clustering
approach. Thus, our findings serve to generate rather
than confirm hypotheses on the association of lipid
profiles with the risk of conversion.

Recent evidence suggested that sex has an effect on
the association of lipids with AD pathology and rates
of cognitive decline [31, 49, 50]. In our study, cluster
(III) showed a decreased risk of conversion in men but
not in women. This cluster had high levels of long-
chain fatty acids lysophosphatidylcholine (both acyl
and ether) and plasmalogens together with low lev-
els of acylcarnitines. Sex-specific remodeling of lipid
metabolism was suggested before, where high lev-
els of sphingomyelins and phosphatidylcholines were
reported in women [49, 50]. Conversely, lysophos-
phatidylcholine and ceramides were found at higher
levels in men [49]. Thus, phospholipases may have
higher activity in men and sphingomyelin synthetase
may have a higher activity in women [49]. Conse-
quently, we adjusted lipid scores for age and sex based
on the control group in an attempt to control for the
complex interaction of lipids with sex during different
stages of AD. Although we started with a substantial
number of cases, the sample size within preclinical
and prodromal sub-cohorts and their respective lipid
endophenotypes clusters was small, so that it was not
feasible to conduct the full analysis in a sex-stratified
fashion, as recommended in [49, 50].

Lack of consistency across metabolomics studies’
results always was and still is a major limitation
that hinders including lipid markers into diagnostic
biomarker panels of AD [50, 51]. This heterogeneity
is related to many factors, among them variability
in data processing procedures and analytical plat-
forms [51], as well as studies’ design, sample size,
distribution of relevant risk factors, and used sta-
tistical approaches [50]. Another factor probably
is the lack of strong effects which contributes to
inconsistent findings across studies. In our Bayesian
regression models, we observed overall small con-
tributions from individual lipid composite scores to
the association with AD pathology CSF biomark-
ers as indicated by poor model performance as well
as small posterior coefficients with large credibility
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intervals. In addition, metabolomics data are inher-
ently highly collinear. This could contribute to high
variance observed within the models and difficulty
assessing variables’ relative importance [52]. Taken
together, a wide range of variance is observed in
metabolomics data that limits their integration in the
first line of diagnostic workflow and renders them
likely more useful in adding to the accuracy of other
prognostic markers [48].

Several limitations need to be acknowledged in
this study. Instead of using raw lipid scores, we used
composite scores based on hierarchical clustering
applied within each lipid class. Such an approach
could have masked the effects of some individual
lipid species. Our objective was to reduce data dimen-
sionality and overcome the drawback of variables’
multicollinearity, particularly on regression coeffi-
cients estimation and model stability. Concurrently
we wanted to maintain the representation of all inves-
tigated lipid subclasses/classes and identify subsets
of functionally similar lipid species. Finally, given
the heterogeneity of lipidomics data, particularly in
early AD individuals, even larger cohorts are needed
to identify endophenotypes robustly. In future anal-
ysis, we would like to tune and then validate our
approach on a larger sample derived from multiple
cohorts and particularly enriched with participants in
the preclinical stage of AD.

CONCLUSION

Through our study, we have shown that alter-
ations in lipids, particularly those harboring poly-
unsaturated fatty acids and ether bonds, can be
captured at the earliest stages of AD. Lipidomics pro-
files provide an overview of an individual’s metabolic
status whilst incorporating the balance within and
between interacting biochemical pathways. Hence,
identifying distinct lipidomic endophenotypes could
contribute to AD risk and clinical trajectories. Refin-
ing and validating this approach could open a new
avenue to adjuvant interventions modulating lipid
metabolic pathways and allow for targeting subjects
with the largest expected benefit.
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